Abstract
Objectives
To determine the maximal isometric neck strength of male and female rugby and football
(soccer) athletes, and to investigate the relationship between neck strength and sport
played, sex, age, anthropometric measurements and concussion history.
Design
Cross-sectional observational study.
Methods
In total, 358 (70% male) healthy football and rugby playing adolescents and adults
participated. Isometric neck strength and anthropometry measurements were collected,
as well as completion of a sociodemographic survey. The mean (standard deviation)
of all measurements for each age group was calculated and compared between sports
and sexes, with correlation analyses performed to determine associations between all
variables.
Results
In general, rugby athletes had stronger neck musculature compared to football athletes,
and males had stronger neck musculature compared to age-matched females, with these
strength differences becoming increasingly significant with age (p < 0.05). The athletes
with stronger neck muscles were older, taller, heavier, had higher bilateral grip
strength and larger neck girth compared to those with weaker neck muscles (p < 0.05).
Male rugby athletes who self-reported higher rates of a previous concussion had lower
neck flexor/extensor strength ratio (p < 0.01). In 11–12-year-old male footballers,
increased heading was associated with increased self-reported previous concussion
(p < 0.01).
Conclusions
These normative neck strength data can form important reference values for rugby and
football athletes from adolescence into adulthood. Male rugby athletes with a previous
history of concussion demonstrated strength imbalances of their neck musculature (lower
flexor/extensor ratio), with this finding having potentially important implications
for training protocols and injury prevention initiatives.
Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Journal of Science and Medicine in SportAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Participation statistics and trends.(Available from)https://www.clearinghouseforsport.gov.au/kb/sport-participation-in-australia/participation-statistics-and-trendsDate accessed: August 13, 2021
- Consensus statement on concussion in sport-the 5th international conference on concussion in sport held in Berlin, October 2016.Br J Sports Med. 2017; 51: 838-847https://doi.org/10.1136/bjsports-2017-097699
- Neck strength: a protective factor reducing risk for concussion in high school sports.J Prim Prev. 2014; 35: 309-319https://doi.org/10.1007/s10935-014-0355-2
- Injury reduction programs for reducing the incidence of sport-related head and neck injuries including concussion: a systematic review.Sports Med. 2021; : 1-16https://doi.org/10.1007/s40279-021-01501-1
- Biomechanics of sport concussion: quest for the elusive injury threshold.Exerc Sport Sci Rev. 2011; 39: 4-11https://doi.org/10.1097/JES.0b013e318201f53e
- Collegiate and high school athlete neck strength in neutral and rotated postures.J Strength Cond Res. 2013; 27: 3173-3182https://doi.org/10.1519/JSC.0b013e31828a1fe2
- Normative database of isometric cervical strength in a healthy population.Med Sci Sports Exerc. 2002; 34: 464-470https://doi.org/10.1097/00005768-200203000-00013
- Neck strength imbalance correlates with increased head acceleration in soccer heading.Sports Health. 2013; 5: 320-326https://doi.org/10.1177/1941738113480935
- Standards for anthropometry assessment.Kinanthropometry Exerc Physiol. 2018; : 68-137https://doi.org/10.4324/9781315385662-4
- Age-related differences in the neck strength of adolescent rugby players: a cross-sectional cohort study of Scottish schoolchildren.Bone Joint Res. 2012; 1: 152-157https://doi.org/10.1302/2046-3758.17.2000079
- Cervical isometric strength and range of motion of elite rugby union players: a cohort study.BMC Sports Sci Med Rehabil. 2014; 6: 32https://doi.org/10.1186/2052-1847-6-32
- The effect of the FIFA 11+ with added neck exercises on maximal isometric neck strength and peak head impact magnitude during heading: a pilot study.Sports Med. 2022; 52: 655-668https://doi.org/10.1007/s40279-021-01564-0
- Foundations of Clinical Research: Applications to Practice.3rd ed. F.A. Davis, 2015: 525-535
- An objective case controlled study: does cervical muscle adaptation in male rugby players aged 13–18 occur when compared to controls?.Anat Physiol. 2014; 4https://doi.org/10.4172/2161-0940.1000139
- Timing of puberty in boys and girls: a population-based study.Paediatr Perinat Epidemiol. 2019; 33: 70-78https://doi.org/10.1111/ppe.12507
- Physical activity–related injury profile in children and adolescents according to their age, maturation, and level of sports participation.Sports Health. 2017; 9: 118-125
- Comparative cervical profiles of adult and under-18 front-row rugby players: implications for playing policy.BMJ Open. 2014; https://doi.org/10.1136/bmjopen-2014-004975
- Injuries in youth amateur soccer and rugby players—comparison of incidence and characteristics.Br J Sports Med. 2004; 38: 168-172https://doi.org/10.1136/bjsm.2002.003020
- A six year prospective study of the incidence and causes of head and neck injuries in international football.Br J Sports Med. 2005; 39https://doi.org/10.1136/bjsm.2005.018937
- Sex-based differences in the incidence of sports-related concussion: systematic review and meta-analysis.Sports Health. 2019; 11: 486-491https://doi.org/10.1177/1941738119877186
- Are there still social barriers to women’s rugby?.Sport Soc. 2013; 16: 772-788https://doi.org/10.1080/17430437.2012.753528
- The mechanism of concussion injury in rugby league.Int Sport Med J. 2014; 15: 328-332
- Characteristics of potential concussive events in three elite football tournaments.Inj Prev. 2020; 26: 334-338https://doi.org/10.1136/injuryprev-2019-043242
- Heading incidence in boys’ football over three seasons.Sci Med Footb. 2021; 5: 175-180https://doi.org/10.1080/24733938.2020.1849783
- An evaluation of the cumulative concussive effect of soccer heading in the youth population.Int J Inj Contr Saf Promot. 2010; 9: 25-31https://doi.org/10.1076/icsp.9.1.25.3324
- Cervical spine involvement in mild traumatic brain injury: a review.J Sports Med. 2016; https://doi.org/10.1155/2016/1590161
- Efficacy of a movement control injury prevention program in adult men’s community rugby union: a cluster randomised controlled trial.Br J Sports Med. 2018; 52: 368-374https://doi.org/10.1136/bjsports-2017-098005
- Reducing musculoskeletal injury and concussion risk in schoolboy rugby players with a pre-activity movement control exercise program: a cluster randomised controlled trial.Br J Sports Med. 2017; 51: 1140-1146https://doi.org/10.1136/bjsports-2016-097434
- The missing piece of the concussion discussion: primary prevention of mild traumatic brain injury in student athletes.J Emerg Crit Care Med. 2019; 3https://doi.org/10.21037/jeccm.2019.01.06
- Lifetime prevalence of self-reported concussion among adolescents involved in competitive sports: a national US study.J Adolesc Health. 2019; 64 (1): 272-275
Article info
Publication history
Published online: April 06, 2022
Accepted:
April 1,
2022
Received in revised form:
March 30,
2022
Received:
November 13,
2021
Identification
Copyright
© 2022 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.